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A numerical study of undulatory locomotion is presented. Unsteady hydrodynam-
ics around an undulatory swimming body is solved using a time-accurate solution of
the three-dimensional, incompressible, laminar Navier–Stokes equations. A realistic
tadpole-shaped body is modeled, which “swims” by sending a laterally compressing,
sinusoidal wave down the tail tip. The method is validated by an extensive numerical
study of the thrust generation of an oscillating airfoil, involving comparisons with
reliable experimental results. For a three-dimensional tadpole model that undergoes
undulatory swimming, the hydrodynamics and mechanism of the undulatory swim-
ming were then analyzed and compared with conventional hydrodynamic theories,
which provide a general understanding of the relationship between the dynamic vor-
tex flow and the jet-stream propulsion associated with undulatory locomotion of
vertebrates. c© 1999 Academic Press

Key Words:Navier–Stokes equations (unsteady, incompressible); biological fluid
mechanics (jet-stream propulsion, undulatory swimming); vorticity flow (reverse
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INTRODUCTION

In nature, aquatic animals are smart swimmers, using jet-stream propulsion effectively,
achieving remarkable propulsive efficiency by comparison to man-made machines. This
is a classic fluid problem of undulatory swimming in the form of propagating a trans-
verse wave along the body from head to tail. This swimming, covering a wide range of
Reynolds numbers from on the order of 102 for tadpole larvae up to on the order of 108 for
the most rapid cetacean, has been observed to be the most effective movement of swim-
ming propulsion employed by a large number of aquatic animals. Lighthill [1] gave an
introduction to the hydrodynamics of aquatic animal propulsion, which elucidated both the
zoological and hydromechanical aspects of the subject. Wu [2–4] systematically studied the
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hydrodynamics of swimming propulsion, using linearized inviscid flow theory. Newman
[5] applied a slender-body theory to fish-like forms having both thickness and appended
lifting surfaces, focusing attention on the case of steady-state motion with a constant
angle of attack and induced drag. Lighthill [6] proposed a large-amplitude enlongated-
body theory describing in detail how complex fish movement generates thrust and lat-
eral forces to both sides. More recently, Chenget al. [7] developed a three-dimensional
waving plate theory pointing out that undulatory motion can reduce three-dimensional ef-
fects. These conventional theories are, however, established on a basis of potential flow
formulation, linearized body boundary conditions, and an assumed shape for the wake,
which can neither solve the nonlinear flow–body interaction nor allow wake dynamics to
develop.

Experimentally, recent studies [8–11] of propulsion of oscillating hydrofoils to correlate
the relationship between mechanical propulsive efficiency and Strouhal number have pro-
vided evidence that optimal efficiency is achieved when a staggered array of reverse Karman
vortices is formed in the wake within a narrow range of Strouhal numbers. Triantafyllou
et al.[9] pointed out that this occurs for most fishes in a range from 0.25 to 035. A study by
Triantafyllou and Triantafyllou visualizing the wake behind a robotic tuna [12] further iden-
tified the phenomenon in which a clear image of the vortex street was observed within the
reported range of the Strouhal number for fish. However, what law of hydrodynamics this
thrust-generation mechanism obeys and how the relationship between three-dimensional
geometry and swimming mode of a realistic vertebrate affects its propulsion are actually
not very clear yet.

We have approached this problem by developing a robust Navier–Stokes (N–S) equation
solver [13–15] that can simulate highly unsteady flows around an undulating locomotor
that can undergo large-amplitude lateral undulation and has an arbitrary 3D geometry. The
validity of the 3D steady simulation was verified by comparison of flow pattern, pressure
distribution, and integrated drag with reliable experimental data collected on ship models
[13]. The time-accurate reliability was further confirmed in the present study by an extensive
study involving grid refinement and by comparison with limited experimental results related
to an oscillating hydrofoil.

The dynamic vortex flow–body interaction of undulatory swimming was analyzed by
modeling a unique, “nonstreamlined” swimmer—a tadpole that wobbles, normally with
the largest lateral inflection at the tail tip twice those commonly observed in most teleost
fishes. They have a globose head and body, with a laterally flattened tail abruptly appended
to it. Tadpoles swim with large lateral deflections compared with those of normal teleost
fishes [16, 17]. Our 3D CFD analysis of tadpole locomotion provides an introduction and
overview of the unsteady hydrodynamics of 3D undulatory swimming by vertebrates. Our
study specifically confirms that tadpoles swim efficiently, with elegant coupling between
their specific kinematics and their unique morphology.

NUMERICAL MODELING OF UNDULATORY SWIMMING

Consider the flow around an undulatory swimming animal with the body moving with re-
spect to a body-fixed reference frame (x, y, z), as depicted in Fig. 1a. A general formulation
of the problem is performed in the body-fixed system so that any translational movement
of the body can be treated as incoming flow past the body.
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FIG. 1. (a) Definition of the body-fixed system (x, y, z), (b) side view of the tadpole model; and (c) top view
of the skeleton of the tadpole model.

Time-Accurate Solution to the Navier–Stokes Equations

Governing Equations

The governing equations are the three-dimensional, incompressible, unsteady Navier–
Stokes equations written in strong conservation form for mass and momentum. The artificial
compressibility method is used by adding a pseudo time derivative of pressure to the con-
tinuity equation. For an arbitrary deformable control volumeV(t), i.e., a cell as illustrated
in Fig. 2, the nondimensionalized governing equations are∫
V(t)

(
∂Q
∂t
+ ∂u0

∂t
+ ∂q
∂τ

)
dV +

∫
V(t)

(
∂F
∂x
+ ∂G
∂y
+ ∂H
∂z
+ ∂Fv
∂x
+ ∂Gv

∂y
+ ∂Hv

∂z

)
dV = 0,

(1)
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FIG. 2. Layout of the cell-centered control volumes atn andn+ 1 steps.
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In the preceding equations,β is the pseudo compressibility coefficient;p is pressure;
u, v, andw are velocity components in Cartesian coordinate systemx, y, andz; t denotes
physical time, andτ is pseudo time. Re is the Reynolds number, andνt is the eddy viscosity
in turbulence simulation. The termu0 expresses the velocity vector of the swimming body
when undergoing acceleration. Note that the termq associated with the pseudo time is
designed for an inner iteration at each physical time step and will vanish when the divergence
of velocity is driven to zero to satisfy the equation of continuity.

By introducing the generalized Reynolds transport theorem and by employing the Gauss
integration theorem in the first and second integrals in Eq. (1), respectively, an integrated
form of the governing equations in a general curvilinear coordinate system is gained as∫

V(t)

(
∂u0

∂t
+ ∂q
∂τ

)
dV + ∂

∂t

∫
V(t)

Q dV +
∮

S(t)

(f −Qug) · nd = 0, (2)

wheref= (F+Fv,G+Gv,H+Hv); S(t)denotes the surface of the control volume;nx, ny,
andnz are components of the unit outward normal vector (n) corresponding to all the faces
of the polyhedron cell; andug is the local velocity of the moving cell surface (see Fig. 2).
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The relationship between the physical and computational spaces is given as
ξ = ξ(x, y, z, t)

η = η(x, y, z, t)

ζ = ζ(x, y, z, t)

t∗ = t

←→


x = x(ξ, η, ζ, t∗)
y = y(ξ, η, ζ, t∗)
z= z(ξ, η, ζ, t∗)
t = t∗

(3)

wheret∗ denotes the time in computational space (ξ, η, ζ ). The last term in Eq. (2) expresses
the net flux across the cell faces. For a structured, boundary-fitted, and cell-centered storage
architecture, we can further reform Eq. (2) in terms of the semi-discrete form, where (i, j, k)
denote the cell index (see Fig. 2), such that

∂

∂t
[VQ] i jk + Ri jk + Vi jk

(
a0+ ∂q

∂τ

)
i jk

= 0, (4)

where

Ri jk = (F̂+ F̂v)i+1/2, j,k − (F̂+ F̂v)i−1/2, j,k + (Ĝ+ Ĝv)i, j+1/2,k − (Ĝ+ Ĝv)i, j−1/2,k

+ (Ĥ + Ĥv)i, j,k+1/2− (Ĥ + Ĥv)i, j,k−1/2, e.g., F̂+ F̂v = (f −Qug) ·Sξn,

Sξn =
[
Sξnx, Sξny, Sξnz

]
, n = [Sξnx, Sξny, Sξnz

]/
S, S=

√
Sξ

2

nx + Sξ
2

ny+ Sξ
2

nz.

The terma0 denotes the acceleration effect (inertia force) of the body which is explicitly
derived from the velocityu0. The termVi jk is the volume of the cell (i, j, k). Note that the
unit outward normal vectorn can be calculated using the areas of the cell faces, e.g.,Sξn in
theξ -direction (see Fig. 2). A detailed description of the evaluation of the inviscid flux and
the viscous flux can be found in Appendixes II and III.

Implicit Algorithm for Time Integration

The Pad´e scheme is employed for the time integration,

∂

∂t
= 1

1t

1

1+ θ1, or
1(VQ)(n+1)

i jk −1(VQ)(n)i jk

1t
= −

{
Ri jk + Vi jk

(
a0+ ∂q

∂τ

)
i jk

}(n+1)

,

(5)

where the parameterθ is taken to be 1 for the implicit Euler scheme with first-order accuracy
in time;1t is the time increment; and1q(n)= q(n+1)− q(n). Thus, Eq. (4) can be discretized
by replacing the time-related term with Eq. (5), such that

1(VQ)(n)i jk +θ1t1

[
Ri jk +Vi jk

(
a0+ ∂q

∂τ

)
i jk

](n)
= −1t

[
Ri jk +Vi jk

(
a0+ ∂q

∂τ

)
i jk

](n)
.

(6)

Since the volume of the cell may change with time due to the moving grid system, we assess
the first term in Eq. (6) as

1(VQ)(n)i jk = (VQ)(n+1)
i jk − (VQ)(n)i jk = V (n+1)

i jk 1Q(n)
i jk +1V (n)

i jk Q(n)
i jk

≈ V (n)
i jk 1Q(n)

i jk +1V (n)
i jk Q(n)

i jk . (7)
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A problem rises here as to how to satisfy the so-called “Geometric Conservation Law”
(GCL) [18], i.e., the conservation of momentum taken into the Newtonian laws at each
time step in terms of evaluation of the increment of the volume1V (n)

i jk for the moving grid
system. Considering the conservation of flux across the cell faces in an extreme case of
solving uniform flow with the moving grid system,1V (n)

i jk can be explicitly expressed by
substituting Eq. (7) into Eq. (6),

1V (n)
i jk = 1t

[(
ug · Sξn

)
i+1/2−

(
ug · Sξn

)
i−1/2+

(
ug · Sηn

)
j+1/2

− (ug · Sηn
)

j−1/2+
(
ug · Sζn

)
k+1/2−

(
ug · Sζn

)
k−1/2

]
. (8)

With regard to the inertial forces due to the body movements, combining the two terms
associated with the accelerationa0 gives

θ1t1(Vi jk a0)
(n) +1t (Vi jk a0)

(n) = 1t
[
(1− θ)(Vi jk a0)

(n) + θV (n)
i jk a(n+1)

0

]
. (9)

The pseudo time-related terms designed for the inner iteration can be approximated as

θ1t1

(
Vi jk

∂q
∂τ

)(n)
+1t

(
Vi jk

∂q
∂τ

)(n)
= 1t

[
(1− θ)

(
Vi jk

∂q
∂τ

)(n)
+ θV (n)

i jk
∂q(n+1)

∂τ

]

≈ 1tV (n)
i jk
∂q(n)

∂τ
. (10)

Note that, in the preceding Eq. (10), the approximation(∂q(n)/∂τ = ∂q(n+1)/∂τ ) is rea-
sonable because the pseudo timeτ is for the inner iteration and thus is dependent at each
physical time step. Hence, the governing equations become

1Q(n)
i jk

1t
+ θ1R(n)

i jk

V (n)
i jk

+ ∂q(n)

∂τ
= −R(n)

i jk

V (n)
i jk

− 1V (n)
i jk

1tV (n)
i jk

Q(n)
i jk +

[
(1− θ)a(n)i jk + θa(n+1)

i jk

]
. (11)

Pseudo Time Integration for the Inner Iteration

The implicit Euler scheme is also employed (see Eq. (5)) for the pseudo time integration.
Note that there exists a special relationship betweenQ(n)

i jk andq(n)i jk based on Eq. (1),

Q(n,m)
i jk = Iaq(n,m)i jk , 1Q(n,m)

i jk = Iaq(n,m)i jk − Iaq(n,0)i jk , (12)

whereIa= [1, 1, 1, 0]T. Superscriptm denotes the number of the inner iteration. With the
differencing operator for the pseudo time, the governing equations can be reformulated as{

I
1τ
+ θ Ia

1t

(
1+ 1V (n)

i jk

V (n)
i jk

)
+ θ

V (n)
i jk

∂R(n,m)
i jk

∂q

}
1q(n,m)i jk

= − 1

V (n)
i jk

[
(1− θ)R(n)

i jk + θR(n,m)
i jk

]+ Ia

1t

{(
q(n,0)i jk − q(n,m)i jk

)− 1V (n)
i jk

V (n)
i jk

q(n,m)i jk

}
+ [(1− θ)a(n)i jk + θa(n+1)

i jk

]
, (13)
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where1τ is the pseudo time step size. In order to benefit from both lower memory and
computational requirements for the solution of Eq. (13), the approximated factorization
method of Beam and Warming [19] is used for the LHS, and hence, Eq. (13) is rewritten
as{

I + θ1t I t

V (n)
i jk

∂R(n,m)
i jk

∂q

}(ξ){
I + θ1t I t

V (n)
i jk

∂R(n,m)
i jk

∂q

}(η){
I + θ1t I t

V (n)
i jk

∂R(n,m)
i jk

∂q

}(ζ )
1q(n,m)i jk

=−1t I t

V (n)
i jk

[
(1− θ)R(n)

i jk + θR(n,m)
i jk

]+ I t Ia

{(
q(n,0)i jk − q(n,m)i jk

)− 1V (n)
i jk

V (n)
i jk

q(n,m)i jk

}
+1t I t

[
(1− θ)a(n)i jk + θa(n+1)

i jk

]
, (14)

whereI t = I/(θ +1t/1τ), and I is a unit matrix. The term associated with the change
of volume of the LHS is neglected, which does not affect the accuracy of solution when
it converges. Note that taking an infinity pseudo time step1τ reduces theI t to a unit
matrix. Numerical investigation by Rogeret al. [20] suggested that this can accelerate the
convergence of the inner iteration. The preceding equations can be further decomposed into
three sweeps in theξ -, η-, andζ -directions in the computational domain. A linear system
of equations is finally yielded, in which the discrete form of the matrix from the LHS is
tridiagonally banded.

The Kinematic Model

The kinematics for undulatory swimming is based on the straightforward locomotion
of a Rana catesbeianalarva [16]. A 3D tadpole model was established in which the tad-
pole could swim under two basic assumptions: (1) the lateral traveling wave is 1D at each
cross section without streamwise twisting (like a waving plate) and propagates down the
body toward the tail tip, and (2) the body elongates during undulatory swimming. We
defined a sinusoidal function to “swim” our tadpole, which is one based on the longi-
tudinal coordinates (Fig. 1) and sends a traveling wave propagating. The wave is of the
form

zi = hi (x, t) = ai (x)sin

[
2π

(
x

λ
− t

T

)]
, (15)

whereai (x) represents amplitude,λ is wavelength,T is period,hi (x, t) denotes the center
plane of the tadpole model,t is time, andx is the coordinate in thex-direction corresponding
to the body length. Equation (15) involves, if extended in Fourier series, the first two terms,
which is coincidentally similar to an equation developed by Videler [17] for swimming
fishes. Videler, however, developed his formula using the first three odd Fourier terms, but
pointed out that the contributions of the higher frequencies, even the third and the fifth,
were marginal. The present definition of the traveling wave can in principle be extended, by
taking they-coordinate in Eq. (15) into consideration, to mimic full 3D movements of an
undulatory swimming animal capable of moving in all three (x, y, andz) planes. Following
Liu et al. [15], the amplitudes ofai (x), as illustrated in Fig. 3, are determined by using the
spline interpolation from five original maximum amplitudes,ai , along the length,L, of the
tadpole, taken directly from Fig. 3 in [16]. These values are at the snout,x= 0,a= 0.05L;
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FIG. 3. Maximum amplitudes of the lateral deflection along the body length.

at the otic capsule,x= 0.19L ,a= 0.005L; at the base of the tail,x= 0.384L ,a= 0.04L;
at the mid tail,x= 0.692L ,a= 0.1L; and at the tail tip,x= 1.0L ,a= 0.2L. (See Fig. 4.)

Given a reference lengthL which represents body length and a reference velocityU that
is the forward velocity, the Reynolds number (Re) is defined by

Re= U L

ν
, (16)

whereν is water viscosity, with a value of 1.533× 10−6 m2/s. For the bullfrog tadpole,
R. catesbeiana, with a body length of 4.7 cm, and a common forward swimming speed
of 5 L s−1, the Re is evaluated to be around 7200. Furthermore, by introducing a reduced
frequency ofk= 2π f L/2U , where f is frequency, we can reformulate Eq. (15) in the
simplified form

hi (x, t) = ai (x) sin

[
2π

(
x

λ

)
− 2kt

]
. (17)

Subscripti denotes the grid points of the center line on the center plane. The reduced
frequency is evaluated to be 5.843 corresponding to a forward swimming speed of 5 L s−1,
from a plot of forward velocity against tail-beat frequency in the study of Wassersug and
Hoff [16]. The overall propulsive wavelength is taken as 0.84L, on the basis of empirical
data of 0.84± 0.1L. Note that in this model the tadpole could swim more like other aquatic
vertebrates, including various fishes, by appropriate modifications to the parameters of
wavelength, reduced frequency, and the amplitudes of the propulsive wave at five or more
points along the length of the animal.

Geometric Model and Grid System

We defined the geometry of the tadpole model on the basis of side and top views of
the bullfrogR. catesbeianaso that the digitized views are as illustrated in Figs. 1b and
lc. A method that can determine 3D geometry using two 2D images of the object based
on two pictures of side and top views was developed. Note that most aquatic undulating
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FIG. 4. Schematic diagram of the 3D tadpole model and the computational domain: (a) digitized 3D tadpole
body and multi-block zones and (b) grid generation on the tadpole body surface.

swimmers are structurally developed to be smooth bodies of revolution if we think of fins
as appendages attached to the body. This implies that using a smooth analytical function to
define the outline, namely, the 2D shape for each cross section down the body, can give a
good approximation to the overall 3D geometry of the object. Here the problem turns out
to be how to accurately determine the 2D shape at each cross section. For simplicity, we
consider the tadpole model to have a symmetrical horizontal plane, which will reduce our
computing time in half. Tadpoles normally swim by compressing their tails laterally with
less vertical motion, which means that a slight discrepancy in the geometry between upper
and lower portions seldom leads to a significant vertical force. Thus, the tadpole can swim
by staying in the water basically with the help of buoyancy.

We consider that the outline of each section for the tadpole can be well approximated by
an elliptic curve as illustrated in Fig. 4a in which two axes of the elliptic curve,rh andrv,
are determined by two pointsA andB which are given by the two curvesL1 of the dorsal
line andL2 of the body line on the horizontal plane. We use the side view picture to define
the dorsal lineL1, and the top view picture for the horizontal body lineL2. Note that for
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the tail of the tadpole we have both a dorsal fin and a dorsal muscle portion, which are of
different thickness. We herein introduce two elliptic curves as illustrated in Fig. 4a to match
both the dorsal fin and the dorsal muscle of the tail, where another curveL3 (Fig. 4a) is
defined based on the side view image of the tadpole. Based on the fact that the dorsal fin is
commonly observed to be roughly a third of the dorsal muscle portion in thickness, we first
define an elliptic curve to match the dorsal fin with one axis ofr/3 and the other ofrv− rvm,
the difference in height between the dorsal fin and the dorsal muscle portion; and second
we make an elliptic curve to fit the dorsal muscle portion with 2rh/3 andrvm. Hence, the
two elliptic curves can be connected continuously but with a local curvature jump at the
joint C. Note that the more points are taken in the longitudinal direction, the better image
of the 3D geometry can be gained. As a result, we can construct a complete 3D geometry of
the object, with half based on the realistic images and half given analytically. Additionally,
a more complicated function can easily be introduced to match the local 2D shape at each
section for the complicated geometry of the object.

With consideration of the complicated geometries of tadpoles as well as fishes, we employ
a C–O type grid topology as well as a multi-block grid system as illustrated in Fig. 5.
Utilization of the C–O type grid topology is capable of closely and smoothly matching the
chordwise lines of the body of revolution (i.e., the O-type at each section), particularly at the
two ends, and is also efficient in resolving the boundary layer and vortex on the body surface
of the posterior tail and especially in the wake (i.e., the C-type). Also, the C–O type grid

FIG. 5. C–O type grid topology system around an undulatory swimming tadpole.
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system appears to be convenient for regenerating grids when the body performs undulating
swimming locomotion such that regridding according to some simple rule at each time
step can be achieved and hence leads to a large reduction in computing time. To generate
high-quality grids corresponding to each portion of the complicated geometry of an aquatic
undulating locomotor, a multi-block grid system is herein introduced. For grids around a 3D
tadpole-shaped body, taking into consideration the special geometry with a globose head
and body and a tapered tail, we divided the domain into three blocks, corresponding to the
head and body, the tail, and the wake, respectively. (Details can be found in Appendix IV.)

Boundary Conditions

The computational domain as shown in Fig. 5 consists of the body surface and the
upstream and the downstream boundaries. Upstream the velocity components are fixed to
be uniform, i.e.,u= 1 andv=w= 0, while pressure is set to zero. Downstream a zero-
gradient condition is taken for both velocity and pressure; i.e.,∂(u, v, w, p)/∂ξ = 0. On
the tadpole body surface, the no-slip condition is used for the velocity components. To
incorporate the dynamic effect due to the acceleration of the oscillating body, pressure
divergence at the surface stencils is derived from the local momentum equation, such that

u = usw
(18)

∂p/∂n= −a0 · n,

where the velocity and the acceleration on the solid wall are evaluated and updated using
the renewed grids on the tadpole body surface at each time step. The viscous-related term
is negligibly small compared with the inertial forces.

Evaluation of Thrust, Power, and Propulsive Efficiency

The three force components (Fx, Fy, Fz) exerted on the body surface are evaluated by a
summation of inviscid and viscous flux over the body surface as

Fbody=


Fx

Fy

Fz

Q

 = −
body∑

i

(Fluxinviscid+ Fluxviscous). (19)

Note that the fourth componentQ comes from the equation of mass conservation as shown
in Eq. (1). Thus, the thrust can be defined as an opposite force acting toward the direction
of fluid flow, namely,−Fx. The power required for the undulating swimming, i.e., the work
done in unit time, can be considered a summation of work done by inertial forces and
hydrodynamic forces on the body surface such that

Power=
∫

V(t)
Fzw dV =

∫
V(t)
(ρḧ(x, t)− Fz)w dV

=
∫ L

0
ρA(x)ḣ(x, t)ḧ(x, t) dx−

∮
S(t)

Fzḣ(x, t) dS

≈
tail tip∑
snout

ρAi (x)ḣi (x, t)ḧi (x, t)1x −
body surface∑

i j

Fzi ḣi (x, t)1Si j , (20)
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whereρ is the water density;A(x) denotes the area of sectioni on the center plane; andSi j

expresses the body surface. Note that the work done in thex- andy-directions is not taken
into account in the preceding Eq. (20) because there is no movement in the two directions.
Any contribution of bending moment is neglected here. To define the mechanical propulsive
efficiency, i.e., the rate of effective work done, in assessing the performance of an undulating
swimmer, we define the propulsive efficiency in a time-averaged manner, such that

η = CT ave ·U
CP ave

, (21)

where, instead of the thrust and power, the dimensionless mean coefficients ofCT andCP

as defined in Appendix I are used. To facilitate comparison with conventional theories, the
thrust here is defined as a contribution from the pressure force while the drag is due to the
skin friction. In a sense, we could use another definition by taking the net thrust with the
force due to skin friction instead of considering the undulating body overall as a propeller,
but that would result in zero efficiency at steadily swimming locomotion.

VALIDATION TEST OF THE METHOD

A variety of validation tests were undertaken [13–15, 21] to assess the reliability of the
present methodology and code. A study of the von Karman vortex street in the wake behind
a circular cylinder at Reynolds numbers of 105 and 200 was very well captured compared
with reported experimental results [13], where the computed Strouhal number of 0.156 was
calculated in excellent agreement with the experimental results of the reported values of
approximately 0.16.

Note that fluid flows in the following simulations are assumed to be laminar and the eddy
viscosityνt for turbulence simulation is taken to be zero for all the simulations.

Jet-Stream Generation of an Oscillating Foil

To elucidate the mechanism of a jet-like vortex pattern corresponding to a thrust-generat-
ing body as described by von Karman and Burgers [22], flows past an NACA0012 airfoil
pitching in a uniform flow at Reynolds numbers 1.2× 104 and 7200 were numerically an-
alyzed. The foil is placed in a body-centered inertial frame of reference that pitches in a
sinusoidal form about the quarter-chord point with an amplitude of 0.1L (L, chord length) at
the trailing edge (corresponding to a pitching angle of approximately 7.75◦) in the uniform
free stream. Thus, the rigid, nondeforming grid system is allowed to roll with the body
through general coordinate transformation, which eliminates the need for generating multi-
ple grids. An extensive grid refinement study was performed and indicated the achievement
of highly accurate solutions. An O-type 141× 57 grid system was eventually employed,
with a minimum grid spacing of approximately 0.001 adjacent to the wall. To identify the
optimal thrust generation in transverse oscillation, the Strouhal number(St= f A/U ), de-
fined as the production of oscillating frequency (f ) multiplied by the width of the wake,
i.e., the maximum excursion of the foil’s trailing edge (double amplitude, 2A= 0.2L), di-
vided by the forward speed (U ), was taken to vary from 0.0 up to 0.4 with an increment
of 0.05. Correspondingly, the reduced frequencies (k) are 0.0, 0.785, 1.571, 2.356, 3.141,
3.927, 4.712, 5.497, and 6.282. The influence of the time step on the computed force-related
quantities was validated by testing three time steps of 0.00125, 0.0025, and 0.005, which
showed insensitivity of the computed results to the selected time step. The parameterβ with
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FIG. 6. Mean thrust coefficientsCT and propulsive efficienciesη against Strouhal numbers St of an oscillating
airfoil NACA0012 (Re= 1.2× 104 and Re= 7200): (a)CT vs St and (b)η vs St.

a value of 50 was employed for all cases, resulting in very fast convergence of the inner
iteration with an averaged iterative numberNit = 10–20 when the divergence of velocity at
each time step was taken to be less than 0.05.

The averaged thrust coefficients and the propulsive efficiencies against the Strouhal num-
bers are plotted in Figs. 6a and 6b and compared with experimental results [8, 9] as well
as the potential flow theory. By means of the momentum theory, Koochesfahani [8] used
the measured mean velocity profile in the wake (one chord length from the trailing edge:
x/L = 1.0) to estimate the mean thrust coefficient at Reynolds number 1.2× 104 without
consideration of the contributions due to the fluctuating quantities and the pressure term.
Overall, the computed force-related coefficients match very well the tendency of the exper-
imental results in terms of both the thrust and the propulsive efficiency, although a slight
discrepancy among different pitching amplitudes as well as in the dependence on Reynolds
number is observed. Both thrust and propulsive efficiency show an increase more or less with
increasing Reynolds numbers. The propulsive efficiency show an optimal variation against
the Strouhal number, with the maximum between 0.25 and 0.35, which is in excellent
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FIG. 7. Iso-velocity contours around an oscillating airfoil NACA0012. (Re= 7200.)

agreement with the experimental results by Triantafyllouet al.[9] although their airfoil was
in a different mode of pitching and heaving motion. This optimal phenomenon of thrust
generation can be explained by the visualized velocity contours against the reduced fre-
quencies around the pitching airfoil as illustrated in Fig. 7. The thrust generation, when the
Strouhal number St is larger than 0.1, corresponds to a staggered array of the reverse von
Karman vortices in the wake and an intense accelerated fluid, the jet stream in the center,
which generates a forward force, i.e., the thrust. Then, an increase in the Strouhal number
leads to more vortex shedding from the trailing edge even though the more the jet stream
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strengthens and widens, the more energy is dissipated into the wake through the vortex
shedding. Hence, the thrust increases (Figs. 6a and 6b) with increasing Strouhal number
(or reduced frequency) but the propulsive efficiency reaches a peak at some point between
0.25 and 0.35.

Note that the propulsive efficiencies of oscillating foils show rather lower values than those
achieved as expected by undulatory swimming fishes. One may expect that parameters like
amplitude and pivot point and other motion like heaving might influence the performance
of the jet-stream propulsion. However, as can be seen in the following section, an optimal
relationship should exist between the mode of motion and the geometry of the oscillating
body in the performance of the jet-stream propulsion, and the undulatory swimming of
aquatic animals is an excellent example of this.

Hydrodynamics and the Mechanism of Undulatory Swimming

A grid system of 199 streamwise grids, 41 grids in the direction vertical to the body
surface, and 50 grids in the wake was employed in the present simulation. The minimum
grid spacing adjacent to the body surface was controlled with an experiential formula of
δζ = 0.1/

√
Re≈ 0.001. Grids were clustered at the solid wall to resolve viscous flow inside

the boundary layer as well as at the leading and trailing edges because of the steep pressure
divergence. The computational domain was limited to a region around the body with a radius
for the outside open boundary of six body lengths. The reduced frequency of 5.843 leads to
a nondimensionalized period of approximately 0.54 and a time incrementdt of 0.005 was
taken. The computation was carried out for nine stroke cycles, using an HP Apollo 9000
series workstation (Model 755).

Hydrodynamics during a Stroke Cycle

Figures 8a–8d illustrate the iso-velocity surfaces behind the undulatory swimming tadpole
and the iso-velocity contours on the horizontal symmetrical middle plane at four moments of
0/T, T/8, 2T/8, and 3T/8 in a quarter stroke cycle. It is clearly seen that, for all moments
of a stroke cycle, a staggered array of the reverse von Karman vortices (colored green) is
detected in the wake, forming an intense accelerated fluid (colored red), i.e., the jet stream
backward in the center, which generates an opposite force to thrust the body forward. The
vortices are quite 3D in structure, in particular at the tail tip, with a width roughly equal to the
greatest amplitude of the tail tip (0.2L) in the stroke plane (the symmetrical middle plane)
and a height equivalent to the greatest height of the tail. The vortex structure in the wake is a
result of shedding of vortices from both sides of the plate-like tail. The vortices are initiated
by the shear flow over the tail fin, starting just caudal to the base of the tail. They grow down
the tail and are shed at the tail tip into the wake. Additionally, the velocity gradient over
the dorsal fin of the tail results in a pair of small longitudinal vortices down the tail tip. An
overview of the streamlines flowing over the undulating tadpole, as shown in Figs. 9a and
9b, however, reveals that these longitudinal vortices merely lead to the freestreamwise flow
spiraling down the tail to be shed into the wake. The wake patterns are qualitatively similar
to the above 2D results of the oscillating airfoil and closely match the wake visualized
behind a robotic tuna by Triantafyllou and Triantafyllou [12]. Characteristic of the unique
shape of tadpoles, a pair of vortices is also detected at the end of the head and the tail,
forming a low-velocity region, namely, the “dead water” zone, due to the abrupt transition
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FIG. 8. Iso-velocity surfaces around an undulatory swimming tadpole-shaped body at (a)t/T = 0; (b) t/T =
1/8; (c) t/T = 2/8; and (d)t/T = 3/8. (Re= 7200,k= 5.843.)

from the globose body. This special region, however, located immediately after the moment
center of tadpoles, barely influences their propulsive performance [15].

Figures 9a and 9b show the instantaneous streamlines around the tadpole, the iso-pressure
contours on the body surface, and the top view of velocity vectors at two instants when the
head–body of the tadpole forms a C- and S-configuration [15]. These figures show roughly
similar pressure distributions and flow patterns in the symmetrical middle plane, compared
with our previous 2D study (Fig. 6A and Fig. 6B in Liuet al. [15]) correspondingly. The
C-configuration (Fig. 9a) corresponds to the maximum thrust, when the tail takes an arched
form with a maximum angle of incidence, i.e., the angle of attack with a maximum area
to push the fluid backward. The instantaneous angle of attack was calculated using the
first derivative of Eq. (15) to be approximately 56◦, much greater than the stall angle of
about 10◦ in the steady case. This means that the aquatic animals undergoing undulatory
swimming very likely utilize the phenomenon of dynamic stall to efficiently generate the
dynamic vorticial flow and the jet stream. The iso-pressure contours further show that
both sides of the C-shaped tail (Fig. 9a), pushed by the positive pressure region (colored
orange) or sucked by the negative pressure (colored blue), contribute to thrust generation.
Correspondingly, the drag due to skin friction reaches a minimum, which implies that the
undulatory swimmer can achieve the best performance at the moment. On the other hand,
focusing on the streamlines around the body, it is seen that the flow is 3D in structure,
with strong secondary flow (cross flow) at the snout and at the edges of the dorsal and
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FIG. 9. Instantaneous streamlines around an undulatory swimming tadpole-shaped body with body surface
covered by pressure contours and velocity vectors and iso-pressure contours in the symmetrical middle plane when
the tadpole tail forms: (a) C-configuration and (b) S-configuration. (Re= 7200,k= 5.843.)

ventral tail fin. The streamlines and the pressure distribution over a large portion of the tail
appear in general quite two-dimensional, with little vertical cross flow over most of the tail,
except within a small region limited to the dorsal and ventral tail fin. This shows evidence
of the theoretical results of Chenget al. [7] based on the 3D waving plate theory, wherein
undulatory motion can produce three-dimensional effects.

Triantafyllou et al. [9] reported that most fishes swim within a narrow region of the
Strouhal number ranging over 0.25–035. The calculated Strouhal number for the tadpole,
however, yields a value of 0.72, approximately twice those observed in fishes [9]. A com-
parison of tail-beat frequency versus specific swimming speed among fishes and tadpoles
[16] shows a tight regression line for tadpoles and fishes. Hence, the higher tail amplitude
(almost double that of carangiform fish such as salmon and trout), as a result, contributes
to the higher Strouhal number for tadpoles. This reveals that tadpoles manage to swim
efficiently in comparison with fishes, but using a different mode.

As illustrated in Figs. 9a and 9b, the flow shows quite strong 3D structure, i.e., cross
flow, over the head–body, leading to a very strong girthwise (crosswise) pressure gradient.
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However, in contrast to what generally occurs with steady flow, a longitudinal pressure
gradient, namely the so-called leading-edge suction region [2–4] at the snout, is barely
detectable during the whole undulating cycle. This is because the idea of the leading-edge
suction region was based on the case of steady flow around a “streamlined” fish, without
accounting for any lateral oscillation of the snout. However, the present analysis shows that
the suction region does exist, but it alternates laterally from side to side in the undulating
tadpole. We believe that the large-amplitude (max= 0.05L) lateral motion of the tadpole’s
snout is more likely to push or suck the incoming flow to either side of the snout rather than
toward its upper or lower surfaces. This can be further confirmed by the visualized flow
in the side view at the instant when the tail is in the C-configuration position (Fig. 9a). A
large suction region, with a lower pressure “island” (shown in blue in Fig. 9a), is detected
on the left side, which is quite 3D in structure. A high-pressure region is also detected on
the corresponding right side. However, the local inclination of the pressure at the snout, i.e.,
the suction, would not seem large enough for this low-pressure region to contribute much
to forward force (i.e., thrust).

Additionally, it is obvious that the lateral oscillation of the undulating tadpole, as seen
in Figs. 9a and 9b, leads to a very large pressure difference across the snout. This result
strongly supports the analysis by Lighthill [23] that pure sideslip of the heads of clupeid
fish would generate a great pressure difference, but simultaneous yawing could enormously
reduce the effective pressure difference and any associated cross-flow effects. Also, the
cross flow that we observed changed significantly with each instant in the stroke cycle (see2
Figs. 9a and 9b). This further implies that limiting this cross flow, as pointed out by Lighthill
[23], with appropriate simultaneous yawing, should reduce the resistance during undulatory
swimming.

Performance of the Jet-Stream Propulsion

The time variations of the thrust coefficient (CT), power coefficient (CP), and drag co-
efficient (CD) due to friction were plotted against time in a nondimensionalized manner
in Fig. 10. The mean thrust (see Appendix I) due to the pressure normal to the surface is
readily produced during the whole stroke cycle and the sum of the thrust coefficient and

FIG. 10. Time variation of instantaneous thrust (CT), power coefficients (CP), and drag due to friction (CD).
(Re= 7200,k= 5.843.)
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drag coefficient, i.e., the net thrust coefficient, now has a very small mean magnitude of
0.01. Since the undulating tadpole model is forced (restrained) to swim in a stream with
constant velocity at a given Re, zero net thrust (i.e., sum of thrust and drag coefficients),
therefore, indicates trimmed swimming. The drag due to skin friction shows slight fluctua-
tion, unlike the distinct periodicity seen for drag in the previous 2D analyses [15], where the
periodicity was thought to be due to the large region of flow separation, whose magnitude
changed with time, as well as to the unsteady boundary layer. Here the reduced fluctuations
in drag are the key reason that the “dead water” zone at the base of the tail and the unsteady
boundary layer over the tail are 3D in structure. Additionally, the friction drag in general, as
a price for producing the pressure-based thrust, shows a significant increase with velocity
gradient enhancement by the oscillating surface (Figs. 8a–8d), in particular over most of
the tail. This is confirmed by the fact that the friction drag coefficient during undulatory
swimming, calculated as 0.030, is approximately 2.5 times greater than that in the steady
case of straight tail-fixed tadpole swimming (0.0118). This means that using the dead drag
in calculating the force-related quantities concerning an undulatory swimming object would
seriously underpredict the real drag produced [24].

Following the method as defined in Eq. (19), which uses the mean thrust multiplied by
the forward swimming speed divided by the required power, we obtained a mean propulsive
efficiency (η) of about 0.45. This value is much higher, by approximately 50%, than those
achieved by the 2D oscillating airfoils. As mentioned above, undulatory swimming can
achieve a much better performance than a rigidly oscillating mode of motion. For compar-
ison, the propulsive efficiency was also calculated by using conventional elongated-body
theory without [25] and with [7] the slope effect at the tail tip. If just the hydrodynamic
force associated with the vortex sheet from the tail in the absence of any vortex shedding
from the body fins [4] is considered and if the propagating wave is defined by Eq. (13) then,
according to the elongated-body theory of Lighthill [25], the propulsive efficiency is

η = 1

2
(1+ β)− 1

2
α2 β2

1+ β , β = U

V
, α = λ

2π

h′(L)
h(L)

, (22)

whereV = f λ denotes the wave speed andh′(L) is the local slope at the tail tip, which
obviously influences the propulsive efficiency. Lighthill [26] suggested that to make the
propulsive efficiency close to unity, it is desirable for thish′(L) to be practically zero
because a nonzero value ofh′(L) reduces the thrust without altering the power. However,
like some aquatic animals tadpoles do not utilize a constant-amplitude envelope near the
caudal tail tip (Fig. 3). Following Chenget al. [7], here the effect of the slope at the tail tip
was also considered in the calculation of the propulsive efficiency. Given the kinematic data
in the section the kinematic model and the slope calculated based on the amplitude–body
length curve in Fig. 3, the propulsive efficiency without the slope term was evaluated to be
0.83 and that with the slope term was 0.70.

CONCLUDING REMARKS

A feasible modeling of undulatory locomotion at moderate Reynolds numbers has been
made on the basis of a time-dependent solution of the Navier–Stokes equations, of an
unsteady, viscous, dynamic vortex flow field around an undulatory swimmer that can un-
dergo arbitrary, large-amplitude movements of realistic undulatory swimming. Successfully
modeling the unsteady hydrodynamics of a realistic three-dimensional tadpole-shaped
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model has thereby established the importance of accurately predicting a staggered array
of reverse von Karman vortices, the jet stream, and their correlation with thrust generation.
The present results also point to an optimal propulsive mechanism appropriate to undulatory
swimming, which is achieved by a best coupling of the geometry and the motion matched
to the body.

APPENDIX I: NOMENCLATURE

x, y, z Boxy-fixed Cartesian coordinates
ξ, η, ζ Body-fitted coordinates
t Physical time
1t Physical time increment
τ Pseudo time
1τ Pseudo time increment
Re Reynolds number
St Strouhal number
νt Eddy viscosity
u0 Velocity of swimmer
a0 Acceleration (or deceleration) of swimmer
V(t) Volume of control volume
Vi jk Volume at cell (i, j, k)
1V (n)

i jk Increment of the volume at cell (i, j, k) at time step (n)
S(t) Surface of the control volume
i, j, k Cell index
(n) Physical time iteration number
(m) Inner iteration number
k = 2π f cm/2Uref Reduced frequency
f Pitching frequency
L Tadpole body length (reference length)
Sw Surface area of the tadpole
ρ Water density
CT = Thrust

1
2ρU2Sbody

Thrust coefficient

CP = Power
1
2ρU3Sbody

Power coefficient

CD = Dragfriction
1
2ρU2Sbody

Drag coefficient due to skin friction

APPENDIX II: EVALUATION OF INVISCID FLUX

Following Roe’s flux-differencing splitting [27], the inviscid flux vector ati ± 1
2 is defined

for the one-dimensional case as

F̂i±1/2 = F̂
(
qLR

i±1/2 Sξi±1/2

)± A±i±1/2δq
LR
i±1/2, (AII.1)

where

qR
i+1/2 = qi + (1− φ2)δqi+1/2− φ1δqi+3/2

δqLR
i±1/2 = qR

i±1/2− qL
i±1/2,

qL
i+1/2 = qi + φ1δqi−1/2+ φ2δqi+1/2.

(AII.2)
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Superscripts R and L denote the left and right sides of the reconstructed flux vector cor-
responding to the interface between the two adjacent cells in a MUSCL [28] manner. The
matrixA±i±1/2 is constructed from the local velocity components and the metrics and is then
reconstructed based on the eigenvalue decomposition analysis. The second term in which
qR

i±1/2 andqL
i±1/2 appear can be interpolated using the flow variables from the adjacent cell

centers. Implementation of different order schemes can be realized by selecting the appro-
priate values for the parametersφ1 andφ2. In this work, the third-order upwind scheme
whenφ1= 1/6 andφ2= 1/3 is used to ensure the accuracy of the evaluation of the RHS,
while the first-order scheme is used for the LHS, whereφ1=φ2= 0.

The Jacobian matrixA±i±1/2 may be reformed as

A± = AR3±AL, (AII.3)

where the two matricesAR andAL are reconstructed from the eigenvalue decomposition
of the inviscid Jacobian matrixA, which is initially built using the flow variables at the
interface of the cells and the following metrics of

A±i+1/2 = A
(
qLR

i±1/2,S
ξ
ni±1/2

) = S

[
Ūδlm + Ul nm nl

βnm 0

]
, l ,m= 1, 2, 3, (AII.4)

whereU= 0.5(qL
i±1/2 + qR

i±1/2)− ug, Ū=U · n. Note that the first-order schemeqLR
i±1/2 is

chosen for the LHS and a third-order scheme is used for the RHS. The diagonal matrix3±

is given as

3± = diag[λ±1 , λ
±
2 , λ

±
3 , λ

±
4 ], λ±m =

λm ± |λm|
2

, λ1 = λ2 = SŪ,
(AII.5)

λ3 = S(Ū+ c), λ4 = S(Ū− c), c=
√

Ū2+ β,

wherec denotes the speed of sound.
At the solid wall stencils wherek= 1, utilization of the boundary-fitted grid system leads

to a zero contravariant velocityU for the LHS and the eigenvalueλ3=Sc, while the other
three components are zero. Hence, the arrayC+k−1/2 at k− 1/2 for the LHS can be simply
given as

C+k−1/2 =
S
2

[
nl nmc nl

βnm c

]
, l ,m= 1, 2, 3, (AII.6)

where the speed of soundc=√β.
For the RHS, the term̂Hk−1/2 atk− 1/2 whenk= 1 is given as

Ĥk−1/2 =
[

0 Snl

βnm 0

][
usw

psw

]
, l ,m= 1, 2, 3, (AII.7)

whereusw is the local velocity of the solid wall, andpsw is the pressure on the solid wall.
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Based on Eq. (AII.1), the inviscid-related part of the term1R(n,m)
i jk in Eq. (14) can be

linearized, by introducing the first-order scheme for the LHS, to become

R(inviscid)
i jk = A−i+1/2qi+1+ (A+i−1/2− A−i+1/2)qi − A+i−1/2qi−1+ B−j+1/2q j+1

+ (B+j−1/2− B−j+1/2)q j − B+j−1/2q j−1+ C−k+1/2qk+1

+ (C+k−1/2− C−k+1/2)qk − C+k−1/2qk−1. (AII.8)

MatricesB andC are constructed in a manner similar to matrixA. In the preceding equation,
terms such aŝF(qLR

i±1/2,S
ξ
i±1/2) in three directions cancel out completely when the first-order

upwind scheme is implemented. For the right hand side of Eq. (14), a third-order upwind
scheme is used to ensure the accuracy of the evaluation of the RHS at each time step, which
involves the calculation of terms likêF(qLR

i±1/2,S
ξ
i±1/2).

APPENDIX III: EVALUATION OF VISCOUS FLUX

The viscous fluxes are obtained from the application of Gauss’s theorem to each cell,
where the velocity derivatives of the cell centroid with respect tox, y, andzare approximated
by the discrete integral over the cell faces. Taking, for example, the one-dimensional case∫

Vi+1/2

ux dx dy dz= Vi+1/2uxi+1/2, (AIII.1)

where the discretized integral is calculated at six faces of the structured cell, i.e., a tetrahe-
dron, across the two adjacent cells of (i, j, k) and (i + 1, j, k), resulting in a second-order
center differencing scheme. The final, linearized form of the viscous fluxes for both the
LHS and RHS becomes

R(viscous)
i jk

=
(
∂F̂v
∂q+

)
i+1/2

qi+1+
[(

∂F̂v
∂q+

)
i+1/2

−
(
∂F̂v
∂q+

)
i−1/2

]
qi +

(
∂F̂v
∂q+

)
i−1/2

qi−1

+
(
∂Ĝv

∂q+

)
j+1/2

q j+1+
[(

∂Ĝv

∂q+

)
j+1/2

−
(
∂Ĝv

∂q+

)
j−1/2

]
q j +

(
∂Ĝv

∂q+

)
j−1/2

q j−1

+
(
∂Ĥv

∂q+

)
k+1/2

qk+1+
[(

∂Ĥv

∂q+

)
k+1/2

−
(
∂Ĥv

∂q+

)
k−1/2

]
qk +

(
∂Ĥv

∂q+

)
k−1/2

qk−1

+ F̂∗vi+1/2− F̂∗vi−1/2+ Ĝ∗v j+1/2− Ĝ∗v j−1/2+ Ĥ∗vk+1/2− Ĥ∗vk−1/2, (AIII.2)

where the first nine terms express the linearized part and the last six terms are the off-diagonal
elements that will be moved to the RHS.

The viscous Jacobian(∂F̂v/∂q±)i+1/2 in the i -sweep, for instance, is(
∂F̂v
∂q±

)
i+1/2

= − 1

Vi+1/2

(
1

Re
+ νt

)[(
Sξn
)

m
fl + δlmSξn · f 0

0 0

]
, l ,m= 1, 2, 3,

(AIII.3)
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whereVi+1/2 denotes the volume of a cell constructed at the cell interface;f= ( f1, f2, f3)

is represented by the surface areas of the cell; and subscriptsl andm denote 1, 2, and 3,
which correspond tox, y, andz. Special modifications are made at the solid wall stencils in
constructing the matrix̂Hvk−1/2 wherek= 1, accounting for the local velocity of the mov-
ing wall.

APPENDIX IV: GRID GENERATION ON THE BODY SURFACE AND IN THE DOMAIN

Grids are first generated on the body surface. Initial grids at cross sections in the longitu-
dinal direction are further redistributed to up to one hundred cross sections with sufficient
small, uniform grid spacing. On demand for grid number, grid spacing, clustering rate, and
so forth, twoξ grid lines on the two curves ofL1 andL2 and twoη grid lines on the curve
L1 at the snout and the tail tip are formed in advance. For anη grid line on the body surface
as illustrated in Fig. 4b, grids are generated on the grid line analytically. The following
procedure is implemented: (1) determine the right and left cross sections by the given two
points at two ends of the designated grid line; (2) divide the grid line in the longitudinal
direction with uniform spacing

dx= (xR− xL)/( jm− 1) and xj = xL + dx( j − 1), (AIV.1)

and in the chordwise direction with a uniform angle increment

δα = π/2( jm− 1) and α j = δα( j − 1); (AIV.2)

(3) interpolate the cross section at the givenxj to determine the elliptic curve with two axes
aj andbj ; and (4) give the coordinatesyj andzj at the pointj by

yj = aj cos(α j ) and zj = bj sin(α j ). (AIV.3)

The grid line is further clustered similarly to those on the two curves. On the other hand,
the grid linesξ eventually yield connecting grid points on eachη grid line.

The open boundary as shown in Fig. 5 is defined by using a quarter-sphere with radius
R for block I covering the head–body and a circular cylinder with the same radiusR for
block II and block III covering the tail and wake. Grids on the open boundary of block I are
uniformly generated. Grids on the open boundary for blocks II and III are made having the
same rate of grid clustering and grid spacing as those on the body surface and in the wake
such that the quality of the grids can be maintained during regridding.

Grids in the domain are then generated by using an algebraic method [29] in each block.
Note that the configuration at the tail tip is slightly modified as illustrated in Fig. 5 to end
with a nonzero height fin instead of tapering to one point, in order to ensure quality of
grids when regridding. Thus, minor modification of the tail tip geometry was made (see
Fig. 1b) and verified to barely affect the flow in both the steady and unsteady simulations.
According to the form of traveling wave which is a function of longitudinal position as
shown in Eq. (15), grid lines at the tail tip and in the wake, therefore, remain nearly straight
during regridding, merely stroking side by side at each section, which significantly enhances
both the stability and the speed of convergence.

Regridding at each time step is performed by first moving grids vertically side by side
on the body surface according to the undulating mode of Eq. (15) without any stretching
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(movement) in the longitudinal direction under the assumption of body elongation during
swimming. Grids on the cut plane in the wake are forced to move with the same distance
as that on the grid line at the tail tip. Grids in the domain are regenerated as

y(i, j, k)(n) = y(i, j, k)(0) + dy(i, j, 1)(body), (AIV.4)

where coordinatey at grid (i, j, k) of a time leveln is updated by adding an increment of
vertical movement ofy(i, j, 1)(body) on the body surface to the initialy(i, j, k)(0), whereas
coordinatesx andz remain unchanged. Implementation of the previous regridding process
is capable of maintaining the quality of the initial grids as well as reducing the regridding
to a minimized level.
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