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A numerical study of undulatory locomotion is presented. Unsteady hydrodynam-
ics around an undulatory swimming body is solved using a time-accurate solution of
the three-dimensional, incompressible, laminar Navier—Stokes equations. A realistic
tadpole-shaped body is modeled, which “swims” by sending a laterally compressing,
sinusoidal wave down the tail tip. The method is validated by an extensive numerical
study of the thrust generation of an oscillating airfoil, involving comparisons with
reliable experimental results. For a three-dimensional tadpole model that undergoes
undulatory swimming, the hydrodynamics and mechanism of the undulatory swim-
ming were then analyzed and compared with conventional hydrodynamic theories,
which provide a general understanding of the relationship between the dynamic vor-
tex flow and the jet-stream propulsion associated with undulatory locomotion of
vertebrates. © 1999 Academic Press

Key Words:Navier—Stokes equations (unsteady, incompressible); biological fluid
mechanics (jet-stream propulsion, undulatory swimming); vorticity flow (reverse
von Karman vortex, wake).

INTRODUCTION

In nature, aquatic animals are smart swimmers, using jet-stream propulsion effectiv
achieving remarkable propulsive efficiency by comparison to man-made machines. T
is a classic fluid problem of undulatory swimming in the form of propagating a tran
verse wave along the body from head to tail. This swimming, covering a wide range
Reynolds numbers from on the order of T6r tadpole larvae up to on the order offtfor
the most rapid cetacean, has been observed to be the most effective movement of s
ming propulsion employed by a large number of aquatic animals. Lighthill [1] gave :
introduction to the hydrodynamics of aquatic animal propulsion, which elucidated both 1
zoological and hydromechanical aspects of the subject. Wu [2—4] systematically studiec
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hydrodynamics of swimming propulsion, using linearized inviscid flow theory. Newme
[5] applied a slender-body theory to fish-like forms having both thickness and appen
lifting surfaces, focusing attention on the case of steady-state motion with a cons
angle of attack and induced drag. Lighthill [6] proposed a large-amplitude enlongat
body theory describing in detail how complex fish movement generates thrust and
eral forces to both sides. More recently, Chartal. [7] developed a three-dimensional
waving plate theory pointing out that undulatory motion can reduce three-dimensional
fects. These conventional theories are, however, established on a basis of potential
formulation, linearized body boundary conditions, and an assumed shape for the w.
which can neither solve the nonlinear flow—body interaction nor allow wake dynamics
develop.

Experimentally, recent studies [8—11] of propulsion of oscillating hydrofoils to correla
the relationship between mechanical propulsive efficiency and Strouhal number have |
vided evidence that optimal efficiency is achieved when a staggered array of reverse Kar
vortices is formed in the wake within a narrow range of Strouhal numbers. Triantafyll
et al.[9] pointed out that this occurs for most fishes in a range from 0.25 to 035. A study
Triantafyllou and Triantafyllou visualizing the wake behind a robotic tuna [12] further idet
tified the phenomenon in which a clear image of the vortex street was observed within
reported range of the Strouhal number for fish. However, what law of hydrodynamics t
thrust-generation mechanism obeys and how the relationship between three-dimens
geometry and swimming mode of a realistic vertebrate affects its propulsion are actu
not very clear yet.

We have approached this problem by developing a robust Navier—Stokes (N-S) eque
solver [13-15] that can simulate highly unsteady flows around an undulating locoma
that can undergo large-amplitude lateral undulation and has an arbitrary 3D geometry.
validity of the 3D steady simulation was verified by comparison of flow pattern, presst
distribution, and integrated drag with reliable experimental data collected on ship moc
[13]. The time-accurate reliability was further confirmed in the present study by an extens
study involving grid refinement and by comparison with limited experimental results relat
to an oscillating hydrofoil.

The dynamic vortex flow—body interaction of undulatory swimming was analyzed |
modeling a unique, “nonstreamlined” swimmer—a tadpole that wobbles, normally wi
the largest lateral inflection at the tail tip twice those commonly observed in most tele
fishes. They have a globose head and body, with a laterally flattened tail abruptly apper
to it. Tadpoles swim with large lateral deflections compared with those of normal tele
fishes [16, 17]. Our 3D CFD analysis of tadpole locomotion provides an introduction a
overview of the unsteady hydrodynamics of 3D undulatory swimming by vertebrates. C
study specifically confirms that tadpoles swim efficiently, with elegant coupling betwe
their specific kinematics and their uniqgue morphology.

NUMERICAL MODELING OF UNDULATORY SWIMMING

Consider the flow around an undulatory swimming animal with the body moving with r
spect to a body-fixed reference franxe ¥, z), as depicted in Fig. 1a. A general formulation
of the problem is performed in the body-fixed system so that any translational movem
of the body can be treated as incoming flow past the body.
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FIG. 1. (a) Definition of the body-fixed system (y, z), (b) side view of the tadpole model; and (c) top view
of the skeleton of the tadpole model.

Time-Accurate Solution to the Navier—Stokes Equations

Governing Equations

The governing equations are the three-dimensional, incompressible, unsteady Nay
Stokes equations written in strong conservation form for mass and momentum. The artifi
compressibility method is used by adding a pseudo time derivative of pressure to the ¢
tinuity equation. For an arbitrary deformable control voluvh@), i.e., a cell as illustrated
in Fig. 2, the nondimensionalized governing equations are

a ou 0 oF 9G o9H OF G oH
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n +1 step

FIG. 2. Layout of the cell-centered control volumesatndn + 1 steps.
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In the preceding equationg, is the pseudo compressibility coefficierg;is pressure;
u, v, andw are velocity components in Cartesian coordinate systeyn andz; t denotes
physical time, and is pseudo time. Re is the Reynolds number, anislthe eddy viscosity
in turbulence simulation. The term expresses the velocity vector of the swimming body
when undergoing acceleration. Note that the teymssociated with the pseudo time is
designed for an inner iteration at each physical time step and will vanish when the diverge
of velocity is driven to zero to satisfy the equation of continuity.

By introducing the generalized Reynolds transport theorem and by employing the Ge
integration theorem in the first and second integrals in Eq. (1), respectively, an integre
form of the governing equations in a general curvilinear coordinate system is gained a:

dUg aq a _
/<W+E>dv+ﬁ/de+7§(f—ng)-nd—O,

V(t) V() S(t)

)

wheref = (F+F,, G+ G,, H+ H,); S(t) denotes the surface of the control volumg;ny,
andn; are components of the unit outward normal veciroprresponding to all the faces
of the polyhedron cell; andy is the local velocity of the moving cell surface (see Fig. 2).
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The relationship between the physical and computational spaces is given as

E=E(X,y,Z1) X=X(E¢,n, ¢, 1t
n=nXY,zt) y=yE¢,n ¢, t%)
<«—> 3)
{=¢(XY,2t) z=12¢&,n,¢,1%)
tr =t t=t*

wheret* denotes the time in computational spagey, ¢). The lasttermin Eq. (2) expresses
the net flux across the cell faces. For a structured, boundary-fitted, and cell-centered stc
architecture, we can further reform Eq. (2) in terms of the semi-discrete form, wher&)
denote the cell index (see Fig. 2), such that

ad aq
—[V Qi Rii Vii — = 4
8t[ Qlijk + Rijk + Vijk (ao-i- at)ijk 0, (4)

where

Rijk = (F+ lev)i+l/2,j,k —(F+ IEv)i—l/Z,j,k + G+ év)i,j+l/2,k -G+ é‘v)i,j—l/Z,k
+(H+ |:|v)i,j.|<+1/2 —(H+ Hv)i,j,kfl/z eg, F+F,=(f— Quy)- S,

$ = [Sﬁx’ ﬁy’ Sr”:z]’ n= [ix’ Srﬁy’ ﬁz]/si S= V ﬁi + g; + §§

The termag denotes the acceleration effect (inertia force) of the body which is explicit
derived from the velocityly. The termV;ji is the volume of the celli( j, k). Note that the
unit outward normal vectan can be calculated using the areas of the cell faces,%.@,
the&-direction (see Fig. 2). A detailed description of the evaluation of the inviscid flux ar
the viscous flux can be found in Appendixes Il and 111

Implicit Algorithm for Time Integration

The Pa@ scheme is employed for the time integration,

(n+1)

o_ 1 A AVQRT-AVQR [ + Vi (30 + 2

AN ALILOA’ At R R T /ijk ’
(5)

where the parametéris taken to be 1 for the implicit Euler scheme with first-order accurac
intime; At is the time increment; andlg™ = g™+ — q™. Thus, Eq. (4) can be discretized
by replacing the time-related term with Eq. (5), such that

(n)
0
Rijk + Vijk (ao+—q> .
ot ik

(6)

Since the volume of the cell may change with time due to the moving grid system, we as:
the first term in Eq. (6) as

O
a
Rijk+\/ijk<ao+—q> 1 = —At
ijk

ANVQ)T +0ALA o~

ANV = VI — (VI = Vit aQ + AV QR

~ )
~ ViR AQ) + AVRQN. (7)
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A problem rises here as to how to satisfy the so-called “Geometric Conservation La
(GCL) [18], i.e., the conservation of momentum taken into the Newtonian laws at ec
time step in terms of evaluation of the increment of the volux(y’ for the moving grid

system. Considering the conservation of flux across the cell faces in an extreme cas

solving uniform flow with the moving grid systenzt;\/i}’,:) can be explicitly expressed by

substituting Eq. (7) into Eq. (6),
VJE) = At[(ug ﬁ)wl/z — (ug- ﬁ)i—l/Z + (Ug - Shn)j+1/2
— (ug - SZ)j—l/Z + (Ug - Sﬁ)kﬂ/z — (ug - Sﬁ)kfl/z]' (8)

With regard to the inertial forces due to the body movements, combining the two ter
associated with the acceleratiafgives

OALAVijkao)™ + At(Vijkao)™ = At[(1— 0)(Mjkao)™ +0Vial™].  (9)

The pseudo time-related terms designed for the inner iteration can be approximated a

9 (n) 9 (n) 9 (n) (n+1)
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0t

5
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Note that, in the preceding Eq. (10), the approximatidg™ /ot =g+ /a7) is rea-
sonable because the pseudo titmis for the inner iteration and thus is dependent at eac
physical time step. Hence, the governing equations become
AQ(“) QAR(H) 9 (n) R(n) V(n)
ijk + ijk q ijk ijk QI(Jnk) + [(1_0)a1(Jnk) al(rlzrl)]. (11)

( IRV )
At \/IJ’IP ot \/IJ’i? Atv<n

Pseudo Time Integration for the Inner Iteration

The implicit Euler scheme is also employed (see Eq. (5)) for the pseudo time integrati
Note that there exists a special relationship bet\/\@ﬁﬁbandqfﬂz based on Eq. (1),

(n,m) (n,m) (nm) __ (nm) (n,0)
Qi =lalij - AQjik " = laGijk laQijk (12)

wherel, =[1, 1, 1, 0]". Superscript denotes the number of the inner iteration. With the
differencing operator for the pseudo time, the governing equations can be reformulate

) (n.m
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At At V.ﬂ? Vljﬂ) aq Y

(n)
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where At is the pseudo time step size. In order to benefit from both lower memory a
computational requirements for the solution of Eqg. (13), the approximated factorizat
method of Beam and Warming [19] is used for the LHS, and hence, Eq. (13) is rewrit
as

&) () ©)
oAtl, ORS™ oatl oRN™ oAtl ORH™ o
I+~ ® P) I+~ P) I+ —& 3 AQjk

Atl, 0 AV o,
=—Jm (1= ORI +ORE™] +1il { (Al = aik™) = T i
ijk ijk
+ At [ - 0)af) +0afi ], (14)
wherel; =1/(0 + At/At), andl is a unit matrix. The term associated with the chang

of volume of the LHS is neglected, which does not affect the accuracy of solution wh
it converges. Note that taking an infinity pseudo time stepreduces thd; to a unit
matrix. Numerical investigation by Roget al. [20] suggested that this can accelerate the
convergence of the inner iteration. The preceding equations can be further decomposec
three sweeps in thg-, -, and¢-directions in the computational domain. A linear systen
of equations is finally yielded, in which the discrete form of the matrix from the LHS i
tridiagonally banded.

The Kinematic Model

The kinematics for undulatory swimming is based on the straightforward locomoti
of a Rana catesbeiankarva [16]. A 3D tadpole model was established in which the tad
pole could swim under two basic assumptions: (1) the lateral traveling wave is 1D at e
cross section without streamwise twisting (like a waving plate) and propagates down
body toward the tail tip, and (2) the body elongates during undulatory swimming. V
defined a sinusoidal function to “swim” our tadpole, which is one based on the lon
tudinal coordinates (Fig. 1) and sends a traveling wave propagating. The wave is of
form

z=hxt =g (x)sin[Zn (i — _:_)] (15)

whereg; (X) represents amplitudg,is wavelengthT is period,h; (x, t) denotes the center
plane of the tadpole modélis time, andk is the coordinate in the-direction corresponding
to the body length. Equation (15) involves, if extended in Fourier series, the first two terr
which is coincidentally similar to an equation developed by Videler [17] for swimmin
fishes. Videler, however, developed his formula using the first three odd Fourier terms,
pointed out that the contributions of the higher frequencies, even the third and the fi
were marginal. The present definition of the traveling wave can in principle be extended
taking they-coordinate in Eq. (15) into consideration, to mimic full 3D movements of a
undulatory swimming animal capable of moving in all threey(, andz) planes. Following
Liu et al.[15], the amplitudes of; (x), as illustrated in Fig. 3, are determined by using the
spline interpolation from five original maximum amplitudas,along the lengthl., of the
tadpole, taken directly from Fig. 3 in [16]. These values are at the sreuf, a=0.05L;
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FIG. 3. Maximum amplitudes of the lateral deflection along the body length.

at the otic capsules =0.19L, a=0.005L; at the base of the taik =0.384L,a=0.04L;
at the mid tailx =0.692L, a=0.1L; and at the tail tipx =1.0L, a=0.2L. (See Fig. 4.)

Given areference length which represents body length and a reference velatitiyat
is the forward velocity, the Reynolds number (Re) is defined by

uL
Re= —, (16)
V

wherev is water viscosity, with a value of.333x 106 m?/s. For the bullfrog tadpole,
R. catesbeianawith a body length of 4.7 cm, and a common forward swimming spee
of 5L s %, the Re is evaluated to be around 7200. Furthermore, by introducing a redu
frequency ofk =27 fL/2U, where f is frequency, we can reformulate Eq. (15) in the
simplified form

hi (x,t) = & (X) sin{Zn (%) — 2kt]. a7

Subscripti denotes the grid points of the center line on the center plane. The redu
frequency is evaluated to be 5.843 corresponding to a forward swimming sp@&dso?,
from a plot of forward velocity against tail-beat frequency in the study of Wassersug a
Hoff [16]. The overall propulsive wavelength is taken as Q@.8dn the basis of empirical
data of 084+ 0.1L. Note that in this model the tadpole could swim more like other aquat
vertebrates, including various fishes, by appropriate modifications to the parameter
wavelength, reduced frequency, and the amplitudes of the propulsive wave at five or im
points along the length of the animal.

Geometric Model and Grid System

We defined the geometry of the tadpole model on the basis of side and top views
the bullfrogR. catesbeiana&o that the digitized views are as illustrated in Figs. 1b an
Ic. A method that can determine 3D geometry using two 2D images of the object ba
on two pictures of side and top views was developed. Note that most aquatic undula
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FIG. 4. Schematic diagram of the 3D tadpole model and the computational domain: (a) digitized 3D tadf
body and multi-block zones and (b) grid generation on the tadpole body surface.

swimmers are structurally developed to be smooth bodies of revolution if we think of fi
as appendages attached to the body. This implies that using a smooth analytical functi
define the outline, namely, the 2D shape for each cross section down the body, can g
good approximation to the overall 3D geometry of the object. Here the problem turns |
to be how to accurately determine the 2D shape at each cross section. For simplicity
consider the tadpole model to have a symmetrical horizontal plane, which will reduce
computing time in half. Tadpoles normally swim by compressing their tails laterally wi
less vertical motion, which means that a slight discrepancy in the geometry between uj
and lower portions seldom leads to a significant vertical force. Thus, the tadpole can s\
by staying in the water basically with the help of buoyancy.

We consider that the outline of each section for the tadpole can be well approximatec
an elliptic curve as illustrated in Fig. 4a in which two axes of the elliptic curyandr,,
are determined by two points and B which are given by the two curves; of the dorsal
line andL , of the body line on the horizontal plane. We use the side view picture to defi
the dorsal lineL;, and the top view picture for the horizontal body lihe. Note that for



232 LIU AND KAWACHI

the tail of the tadpole we have both a dorsal fin and a dorsal muscle portion, which are
different thickness. We herein introduce two elliptic curves as illustrated in Fig. 4a to ma
both the dorsal fin and the dorsal muscle of the tail, where another tur{€ig. 4a) is
defined based on the side view image of the tadpole. Based on the fact that the dorsal
commonly observed to be roughly a third of the dorsal muscle portion in thickness, we f
define an elliptic curve to match the dorsal fin with one axis/@fand the other af, — rym,
the difference in height between the dorsal fin and the dorsal muscle portion; and sec
we make an elliptic curve to fit the dorsal muscle portion with/3 andr,n,,. Hence, the
two elliptic curves can be connected continuously but with a local curvature jump at 1
joint C. Note that the more points are taken in the longitudinal direction, the better ima
of the 3D geometry can be gained. As a result, we can construct a complete 3D geomet
the object, with half based on the realistic images and half given analytically. Additional
a more complicated function can easily be introduced to match the local 2D shape at ¢
section for the complicated geometry of the object.

With consideration of the complicated geometries of tadpoles as well as fishes, we em|
a C-0 type grid topology as well as a multi-block grid system as illustrated in Fig.
Utilization of the C—O type grid topology is capable of closely and smoothly matching tl
chordwise lines of the body of revolution (i.e., the O-type at each section), particularly at
two ends, and is also efficient in resolving the boundary layer and vortex on the body sur
of the posterior tail and especially in the wake (i.e., the C-type). Also, the C-O type g

3,

\.
T

ST
S A S
%

FIG.5. C-O type grid topology system around an undulatory swimming tadpole.
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system appears to be convenient for regenerating grids when the body performs undul
swimming locomotion such that regridding according to some simple rule at each ti
step can be achieved and hence leads to a large reduction in computing time. To gen
high-quality grids corresponding to each portion of the complicated geometry of an aqu:
undulating locomotor, a multi-block grid system is herein introduced. For grids around a
tadpole-shaped body, taking into consideration the special geometry with a globose |
and body and a tapered tail, we divided the domain into three blocks, corresponding to
head and body, the tail, and the wake, respectively. (Details can be found in Appendix

Boundary Conditions

The computational domain as shown in Fig. 5 consists of the body surface and
upstream and the downstream boundaries. Upstream the velocity components are fix
be uniform, i.e.u=1 andv=w =0, while pressure is set to zero. Downstream a zerc
gradient condition is taken for both velocity and pressure; d.@1, v, w, p)/9& =0. On
the tadpole body surface, the no-slip condition is used for the velocity components.
incorporate the dynamic effect due to the acceleration of the oscillating body, press
divergence at the surface stencils is derived from the local momentum equation, such

U = Usw

(18)
dp/an = —ag - n,

where the velocity and the acceleration on the solid wall are evaluated and updated u
the renewed grids on the tadpole body surface at each time step. The viscous-related
is negligibly small compared with the inertial forces.

Evaluation of Thrust, Power, and Propulsive Efficiency

The three force components,(, Fy, F,) exerted on the body surface are evaluated by
summation of inviscid and viscous flux over the body surface as

=
FX body
Foody = Fy =—- Z(Fluxinviscid + Fluxyiscous - (19)
z i
Q

Note that the fourth componef comes from the equation of mass conservation as show
in Eq. (1). Thus, the thrust can be defined as an opposite force acting toward the direc
of fluid flow, namely,— F. The power required for the undulating swimming, i.e., the worl
done in unit time, can be considered a summation of work done by inertial forces &
hydrodynamic forces on the body surface such that

Power:/ FwdV = (ph(x, t) = FHwdV
V(1) V()

L
:/ pA(x)h(x,t)H(x,t)dx—jQ{ Fh(x,t)dS
0 S(t)

tail tip body surface

~ Y pAORC DR G HAX = Y Fihi(x,HAS;,  (20)

snout ij
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wherep is the water densityA(x) denotes the area of sectibon the center plane; art
expresses the body surface. Note that the work done ir-thady-directions is not taken
into account in the preceding Eq. (20) because there is no movement in the two directi
Any contribution of bending moment is neglected here. To define the mechanical propuls
efficiency, i.e., the rate of effective work done, in assessing the performance of an undula
swimmer, we define the propulsive efficiency in a time-averaged manner, such that

_ CTave' U

n= , (21)

CP ave

where, instead of the thrust and power, the dimensionless mean coeffici€itanti Cp

as defined in Appendix | are used. To facilitate comparison with conventional theories,
thrust here is defined as a contribution from the pressure force while the drag is due to
skin friction. In a sense, we could use another definition by taking the net thrust with 1
force due to skin friction instead of considering the undulating body overall as a propell
but that would result in zero efficiency at steadily swimming locomotion.

VALIDATION TEST OF THE METHOD

A variety of validation tests were undertaken [13-15, 21] to assess the reliability of 1
present methodology and code. A study of the von Karman vortex street in the wake bel
a circular cylinder at Reynolds numbers of 105 and 200 was very well captured compe
with reported experimental results [13], where the computed Strouhal number of 0.156
calculated in excellent agreement with the experimental results of the reported value
approximately 0.16.

Note that fluid flows in the following simulations are assumed to be laminar and the ec
viscosityv; for turbulence simulation is taken to be zero for all the simulations.

Jet-Stream Generation of an Oscillating Foil

To elucidate the mechanism of a jet-like vortex pattern corresponding to a thrust-gene
ing body as described by von Karman and Burgers [22], flows past an NACA0012 airf
pitching in a uniform flow at Reynolds number2i 10* and 7200 were numerically an-
alyzed. The foil is placed in a body-centered inertial frame of reference that pitches i
sinusoidal form about the quarter-chord point with an amplitude df QL1 chord length) at
the trailing edge (corresponding to a pitching angle of approximately Y7 ghe uniform
free stream. Thus, the rigid, nondeforming grid system is allowed to roll with the bo
through general coordinate transformation, which eliminates the need for generating m
ple grids. An extensive grid refinement study was performed and indicated the achieven
of highly accurate solutions. An O-type 14157 grid system was eventually employed,
with a minimum grid spacing of approximately 0.001 adjacent to the wall. To identify tf
optimal thrust generation in transverse oscillation, the Strouhal nu¢sberf A/U), de-
fined as the production of oscillating frequendy) (multiplied by the width of the wake,
i.e., the maximum excursion of the foil’s trailing edge (double amplitude=2.2L), di-
vided by the forward speed)(), was taken to vary from 0.0 up to 0.4 with an increment
of 0.05. Correspondingly, the reduced frequencig@sate 0.0, 0.785, 1.571, 2.356, 3.141,
3.927,4.712,5.497, and 6.282. The influence of the time step on the computed force-rel
quantities was validated by testing three time steps of 0.00125, 0.0025, and 0.005, w
showed insensitivity of the computed results to the selected time step. The paraméter
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FIG.6. Mean thrust coefficieni8; and propulsive efficienciesagainst Strouhal numbers St of an oscillating
airfoil NACA0012 (Re= 1.2 x 10* and Re= 7200): (a)C; vs St and (b); vs St.

a value of 50 was employed for all cases, resulting in very fast convergence of the in
iteration with an averaged iterative numbér = 10—-20 when the divergence of velocity at
each time step was taken to be less than 0.05.

The averaged thrust coefficients and the propulsive efficiencies against the Strouhal r
bers are plotted in Figs. 6a and 6b and compared with experimental results [8, 9] as:
as the potential flow theory. By means of the momentum theory, Koochesfahani [8] u:
the measured mean velocity profile in the wake (one chord length from the trailing ed
x/L = 1.0) to estimate the mean thrust coefficient at Reynolds numBex 10* without
consideration of the contributions due to the fluctuating quantities and the pressure te
Overall, the computed force-related coefficients match very well the tendency of the ex|
imental results in terms of both the thrust and the propulsive efficiency, although a sli
discrepancy among different pitching amplitudes as well as in the dependence on Reyn
number is observed. Both thrust and propulsive efficiency show anincrease more or less
increasing Reynolds numbers. The propulsive efficiency show an optimal variation aga
the Strouhal number, with the maximum between 0.25 and 0.35, which is in excell
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St=0.0 St=0.1

FIG. 7. Iso-velocity contours around an oscillating airfoil NACA0012. (R&200.)

agreement with the experimental results by Triantafydloal.[9] although their airfoil was

in a different mode of pitching and heaving motion. This optimal phenomenon of thrt
generation can be explained by the visualized velocity contours against the reduced
guencies around the pitching airfoil as illustrated in Fig. 7. The thrust generation, when
Strouhal number St is larger than 0.1, corresponds to a staggered array of the reverse
Karman vortices in the wake and an intense accelerated fluid, the jet stream in the ce
which generates a forward force, i.e., the thrust. Then, an increase in the Strouhal nur
leads to more vortex shedding from the trailing edge even though the more the jet str
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strengthens and widens, the more energy is dissipated into the wake through the v
shedding. Hence, the thrust increases (Figs. 6a and 6b) with increasing Strouhal nut
(or reduced frequency) but the propulsive efficiency reaches a peak at some point betv
0.25 and 0.35.

Note thatthe propulsive efficiencies of oscillating foils show rather lower values than the
achieved as expected by undulatory swimming fishes. One may expect that parameter:
amplitude and pivot point and other motion like heaving might influence the performar
of the jet-stream propulsion. However, as can be seen in the following section, an opti
relationship should exist between the mode of motion and the geometry of the oscilla
body in the performance of the jet-stream propulsion, and the undulatory swimming
aquatic animals is an excellent example of this.

Hydrodynamics and the Mechanism of Undulatory Swimming

A grid system of 199 streamwise grids, 41 grids in the direction vertical to the bo
surface, and 50 grids in the wake was employed in the present simulation. The minirr
grid spacing adjacent to the body surface was controlled with an experiential formule
8 =0.1/+/Re~ 0.001. Grids were clustered at the solid wall to resolve viscous flow insic
the boundary layer as well as at the leading and trailing edges because of the steep pre
divergence. The computational domain was limited to a region around the body with a rac
for the outside open boundary of six body lengths. The reduced frequency of 5.843 leac
a nondimensionalized period of approximately 0.54 and a time incretite{t0.005 was
taken. The computation was carried out for nine stroke cycles, using an HP Apollo 9(
series workstation (Model 755).

Hydrodynamics during a Stroke Cycle

Figures 8a—8d illustrate the iso-velocity surfaces behind the undulatory swimming tady
and the iso-velocity contours on the horizontal symmetrical middle plane at four moment
0/T,T/8,2T/8, and 3 /8 in a quarter stroke cycle. Itis clearly seen that, for all moment
of a stroke cycle, a staggered array of the reverse von Karman vortices (colored gree
detected in the wake, forming an intense accelerated fluid (colored red), i.e., the jet str
backward in the center, which generates an opposite force to thrust the body forward.
vortices are quite 3D in structure, in particular at the tail tip, with a width roughly equal to t
greatest amplitude of the tail tip (Q.2in the stroke plane (the symmetrical middle plane)
and a height equivalent to the greatest height of the tail. The vortex structure in the wake
result of shedding of vortices from both sides of the plate-like tail. The vortices are initiat
by the shear flow over the tail fin, starting just caudal to the base of the tail. They grow dc
the tail and are shed at the tail tip into the wake. Additionally, the velocity gradient ov
the dorsal fin of the tail results in a pair of small longitudinal vortices down the tail tip. A
overview of the streamlines flowing over the undulating tadpole, as shown in Figs. 9a :
9b, however, reveals that these longitudinal vortices merely lead to the freestreamwise
spiraling down the tail to be shed into the wake. The wake patterns are qualitatively sim
to the above 2D results of the oscillating airfoil and closely match the wake visualiz
behind a robotic tuna by Triantafyllou and Triantafyllou [12]. Characteristic of the uniqt
shape of tadpoles, a pair of vortices is also detected at the end of the head and the
forming a low-velocity region, namely, the “dead water” zone, due to the abrupt transiti
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FIG. 8. Iso-velocity surfaces around an undulatory swimming tadpole-shaped body AT (&)0; (b)t/T =
1/8; (c)t/T =2/8; and (d)t/ T = 3/8. (Re= 7200,k = 5.843.)

from the globose body. This special region, however, located immediately after the mornr
center of tadpoles, barely influences their propulsive performance [15].

Figures 9a and 9b show the instantaneous streamlines around the tadpole, the iso-pre
contours on the body surface, and the top view of velocity vectors at two instants when
head-body of the tadpole forms a C- and S-configuration [15]. These figures show roug
similar pressure distributions and flow patterns in the symmetrical middle plane, compz
with our previous 2D study (Fig. 6A and Fig. 6B in Let al.[15]) correspondingly. The
C-configuration (Fig. 9a) corresponds to the maximum thrust, when the tail takes an arc
form with a maximum angle of incidence, i.e., the angle of attack with a maximum ar
to push the fluid backward. The instantaneous angle of attack was calculated using
first derivative of Eq. (15) to be approximately°5@nuch greater than the stall angle of
about 10 in the steady case. This means that the aquatic animals undergoing undula
swimming very likely utilize the phenomenon of dynamic stall to efficiently generate tt
dynamic vorticial flow and the jet stream. The iso-pressure contours further show t
both sides of the C-shaped tail (Fig. 9a), pushed by the positive pressure region (col
orange) or sucked by the negative pressure (colored blue), contribute to thrust generas
Correspondingly, the drag due to skin friction reaches a minimum, which implies that 1
undulatory swimmer can achieve the best performance at the moment. On the other h
focusing on the streamlines around the body, it is seen that the flow is 3D in structt
with strong secondary flow (cross flow) at the snout and at the edges of the dorsal
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Top view

FIG. 9. Instantaneous streamlines around an undulatory swimming tadpole-shaped body with body sur
covered by pressure contours and velocity vectors and iso-pressure contours in the symmetrical middle plane
the tadpole tail forms: (a) C-configuration and (b) S-configuration=£R200,k =5.843.)

ventral tail fin. The streamlines and the pressure distribution over a large portion of the
appear in general quite two-dimensional, with little vertical cross flow over most of the te
except within a small region limited to the dorsal and ventral tail fin. This shows eviden
of the theoretical results of Chergal.[7] based on the 3D waving plate theory, wherein
undulatory motion can produce three-dimensional effects.

Triantafyllou et al. [9] reported that most fishes swim within a narrow region of the
Strouhal number ranging over 0.25-035. The calculated Strouhal number for the tadf
however, yields a value of 0.72, approximately twice those observed in fishes [9]. A cc
parison of tail-beat frequency versus specific swimming speed among fishes and tady
[16] shows a tight regression line for tadpoles and fishes. Hence, the higher tail amplit
(almost double that of carangiform fish such as salmon and trout), as a result, contrib
to the higher Strouhal number for tadpoles. This reveals that tadpoles manage to s
efficiently in comparison with fishes, but using a different mode.

As illustrated in Figs. 9a and 9b, the flow shows quite strong 3D structure, i.e., Crt
flow, over the head—-body, leading to a very strong girthwise (crosswise) pressure grad
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However, in contrast to what generally occurs with steady flow, a longitudinal pressi
gradient, namely the so-called leading-edge suction region [2—4] at the snout, is ba
detectable during the whole undulating cycle. This is because the idea of the leading-e
suction region was based on the case of steady flow around a “streamlined” fish, witt
accounting for any lateral oscillation of the snout. However, the present analysis shows
the suction region does exist, but it alternates laterally from side to side in the undulat
tadpole. We believe that the large-amplitude (raa05L ) lateral motion of the tadpole’s
snout is more likely to push or suck the incoming flow to either side of the snout rather tt
toward its upper or lower surfaces. This can be further confirmed by the visualized fl
in the side view at the instant when the tail is in the C-configuration position (Fig. 9a).
large suction region, with a lower pressure “island” (shown in blue in Fig. 9a), is detect
on the left side, which is quite 3D in structure. A high-pressure region is also detected
the corresponding right side. However, the local inclination of the pressure at the snout,
the suction, would not seem large enough for this low-pressure region to contribute m
to forward force (i.e., thrust).

Additionally, it is obvious that the lateral oscillation of the undulating tadpole, as se
in Figs. 9a and 9b, leads to a very large pressure difference across the snout. This r
strongly supports the analysis by Lighthill [23] that pure sideslip of the heads of clupe
fish would generate a great pressure difference, but simultaneous yawing could enormc
reduce the effective pressure difference and any associated cross-flow effects. Also
cross flow that we observed changed significantly with each instant in the stroke cycle (s
Figs. 9a and 9b). This further implies that limiting this cross flow, as pointed out by Lighth
[23], with appropriate simultaneous yawing, should reduce the resistance during undula
swimming.

Performance of the Jet-Stream Propulsion

The time variations of the thrust coefficier@«), power coefficientCp), and drag co-
efficient Cp) due to friction were plotted against time in a nondimensionalized mann
in Fig. 10. The mean thrust (see Appendix I) due to the pressure normal to the surfac
readily produced during the whole stroke cycle and the sum of the thrust coefficient
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FIG. 10. Time variation of instantaneous thru§t(), power coefficients@p), and drag due to frictionQp).
(Re=7200,k =5.843.)



NUMERICAL STUDY OF UNDULATORY SWIMMING 241

drag coefficient, i.e., the net thrust coefficient, now has a very small mean magnitude
0.01. Since the undulating tadpole model is forced (restrained) to swim in a stream v
constant velocity at a given Re, zero net thrust (i.e., sum of thrust and drag coefficier
therefore, indicates trimmed swimming. The drag due to skin friction shows slight fluctt
tion, unlike the distinct periodicity seen for drag in the previous 2D analyses [15], where:
periodicity was thought to be due to the large region of flow separation, whose magnit
changed with time, as well as to the unsteady boundary layer. Here the reduced fluctua
in drag are the key reason that the “dead water” zone at the base of the tail and the unst
boundary layer over the tail are 3D in structure. Additionally, the friction drag in general,
a price for producing the pressure-based thrust, shows a significant increase with velc
gradient enhancement by the oscillating surface (Figs. 8a—8d), in particular over mos
the tail. This is confirmed by the fact that the friction drag coefficient during undulato
swimming, calculated as 0.030, is approximately 2.5 times greater than that in the ste
case of straight tail-fixed tadpole swimming (0.0118). This means that using the dead «
in calculating the force-related quantities concerning an undulatory swimming object wo
seriously underpredict the real drag produced [24].

Following the method as defined in Eq. (19), which uses the mean thrust multiplied
the forward swimming speed divided by the required power, we obtained a mean propul
efficiency ¢) of about 0.45. This value is much higher, by approximately 50%, than tho
achieved by the 2D oscillating airfoils. As mentioned above, undulatory swimming c
achieve a much better performance than a rigidly oscillating mode of motion. For com;
ison, the propulsive efficiency was also calculated by using conventional elongated-b
theory without [25] and with [7] the slope effect at the tail tip. If just the hydrodynami
force associated with the vortex sheet from the tail in the absence of any vortex shed
from the body fins [4] is considered and if the propagating wave is defined by Eq. (13) th
according to the elongated-body theory of Lighthill [25], the propulsive efficiency is

A h(L)

1, p? U ~
V' YT o2rhiy

1
n=50+p)—Sa 11p

B= (22)

whereV = f denotes the wave speed alnidL ) is the local slope at the tail tip, which
obviously influences the propulsive efficiency. Lighthill [26] suggested that to make t
propulsive efficiency close to unity, it is desirable for thigL) to be practically zero
because a nonzero valueltfL) reduces the thrust without altering the power. However
like some aquatic animals tadpoles do not utilize a constant-amplitude envelope neal
caudal tail tip (Fig. 3). Following Chengf al.[7], here the effect of the slope at the tail tip
was also considered in the calculation of the propulsive efficiency. Given the kinematic c
in the section the kinematic model and the slope calculated based on the amplitude—|
length curve in Fig. 3, the propulsive efficiency without the slope term was evaluated to
0.83 and that with the slope term was 0.70.

CONCLUDING REMARKS

A feasible modeling of undulatory locomotion at moderate Reynolds numbers has b
made on the basis of a time-dependent solution of the Navier—Stokes equations, o
unsteady, viscous, dynamic vortex flow field around an undulatory swimmer that can
dergo arbitrary, large-amplitude movements of realistic undulatory swimming. Successfi
modeling the unsteady hydrodynamics of a realistic three-dimensional tadpole-she
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model has thereby established the importance of accurately predicting a staggered
of reverse von Karman vortices, the jet stream, and their correlation with thrust generat
The present results also point to an optimal propulsive mechanism appropriate to undula
swimming, which is achieved by a best coupling of the geometry and the motion matcl
to the body.

APPENDIX I: NOMENCLATURE

X, Y, Z Boxy-fixed Cartesian coordinates
&L Body-fitted coordinates
t Physical time
At Physical time increment
T Pseudo time
At Pseudo time increment
Re Reynolds number
St Strouhal number
V¢ Eddy viscosity
Uo Velocity of swimmer
a Acceleration (or deceleration) of swimmer
V(1) \Volume of control volume
Vijk Volume at cell {, j, k)
AV} Increment of the volume at cell,{, k) at time step1)
S(t) Surface of the control volume
i,k Cell index
(n) Physical time iteration number
(m) Inner iteration number
k =27fcm/2Us Reduced frequency
f Pitching frequency
L Tadpole body length (reference length)
S, Surface area of the tadpole
0 Water density
Cr= %JSQL‘:;Y Thrust coefficient
Cp = %;jy;:dy Power coefficient
Cp = -XaGicion. Drag coefficient due to skin friction
50U ?Shody

APPENDIX II: EVALUATION OF INVISCID FLUX

Following Roe’s flux-differencing splitting [27], the inviscid flux vectoi at % is defined
for the one-dimensional case as

Fit12 = F(QiLjF:yz Sﬂgﬂ/z) + Aiiil/zaq:_:El/Z’ (AlL1)
where

A1z = Gi + (1 — $2)8Gi 112 — $18Gi 1372
5Qi|'fl/2 = qiRil/Z - Qil'ﬂ/z, (All.2)
Ary12 = Gi + ¢18Gi-1/2 + #2680 112.
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Superscripts R and L denote the left and right sides of the reconstructed flux vector
responding to the interface between the two adjacent cells in a MUSCL [28] manner. -
matrixAiijEl/2 is constructed from the local velocity components and the metrics and is th
reconstructed based on the eigenvalue decomposition analysis. The second term in v
qiRil/2 andqi'-ﬂ/2 appear can be interpolated using the flow variables from the adjacent ¢
centers. Implementation of different order schemes can be realized by selecting the af
priate values for the parameteps and ¢-. In this work, the third-order upwind scheme
wheng; =1/6 andg, = 1/3 is used to ensure the accuracy of the evaluation of the RH
while the first-order scheme is used for the LHS, whgre- ¢, =0.
The Jacobian matril(xiiﬂ/2 may be reformed as

AT = ARAEAL, (AIL.3)

where the two matriceAR andAl are reconstructed from the eigenvalue decompositio
of the inviscid Jacobian matri&, which is initially built using the flow variables at the
interface of the cells and the following metrics of

USim + Uinm Ny

A =AGE 2 S, =S B, 0

], ILm=1,23, (All4)

whereU = 0.5(qiLjEl/2 + qiRﬂ/z) —Ug, U=U - n. Note that the first-order scherqhﬁl/2 is
chosen for the LHS and a third-order scheme is used for the RHS. The diagonal Afatrix
is given as

. Am £ | —
AT =diaghf, A$, 05, 25),  AE="T Al A=Ay =SU,

m 2 ’

_ B (All.5)
A3 =S +0©), A= S(U —0), c= U2+ 8,
wherec denotes the speed of sound.

At the solid wall stencils wherke= 1, utilization of the boundary-fitted grid system leads
to a zero contravariant velocity for the LHS and the eigenvalug = Sc while the other
three components are zero. Hence, the a@@{vz atk — 1/2 for the LHS can be simply
given as

S [n. NnmC N

+
Ck71/2 =5 gn c
m

. ], Lm=123, (Al1.6)

where the speed of sourd= ./B.
For the RHS, the terrhly_1/> atk — 1/2 whenk =1 is given as

. 0 Sn
Flicie = ! {”SW], I,m=123, (AlL7)
Bnm O Psw

whereus,, is the local velocity of the solid wall, anp,, is the pressure on the solid wall.
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Based on Eq. (All.1), the inviscid-related part of the teaR(,™ in Eq. (14) can be
linearized, by introducing the first-order scheme for the LHS, to become

Rl(Jrllwsud) |+1/2Q|+1 + (AI 12— Ai12)0 — Ai+_1/2Qi71 + BI+1/2QJ'+1
+(B12 — Bj11/2)0i = BJ_120j-1+ Cicyr/20kia
+(C_1/2 = Cicy1/2)t — Cy_y/20k-1- (All.8)

MatricesB andC are constructed in a manner similar to ma#ixXn the preceding equation,
terms such al%(qiLiRl/z, §ﬂ/2) in three directions cancel out completely when the first-orde
upwind scheme is implemented. For the right hand side of Eq. (14), a third-order upw
scheme is used to ensure the accuracy of the evaluation of the RHS at each time step, v
involves the calculation of terms KGR, 5, S11 /).

APPENDIX IlI: EVALUATION OF VISCOUS FLUX

The viscous fluxes are obtained from the application of Gauss’s theorem to each
where the velocity derivatives of the cell centroid with respegt tp andz are approximated
by the discrete integral over the cell faces. Taking, for example, the one-dimensional ce

[ uedxdy dz=Vissuar (AlLL)

Viti2

where the discretized integral is calculated at six faces of the structured cell, i.e., a tetr
dron, across the two adjacent cells ofj( k) and { + 1, j, k), resulting in a second-order
center differencing scheme. The final, linearized form of the viscous fluxes for both 1
LHS and RHS becomes

(viscoug
Rijk

(%), .0 +(
9% /ita2 .

) ) o3,
k+1 - k k-1
09" ) ky1/2 9% /t1/2 9% /v 12 09" Jk_1/2

+Fiv12 = Flici2 + Gji12 — Glj—12 + Hikgr2 — Hikoay2s (AlN.2)

where the first nine terms express the linearized part and the last six terms are the off-diag
elements that will be moved to the RHS.
The viscous Jacobia Fv/aqi)iﬂ/z in thei-sweep, for instance, is

F ) i+ omSE-f 0
<8Fv> -y, (1+w) (S 4 8mS; . ILm=123
8qi i4+1/2 Vi+1/2 Re 0 0

(Alll.3)
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whereV, 11/, denotes the volume of a cell constructed at the cell interfaed;f,, 2, f3)

is represented by the surface areas of the cell; and subdcaptsm denote 1, 2, and 3,
which correspond t&, y, andz. Special modifications are made at the solid wall stencils i
constructing the matri)@lvk_l/z wherek =1, accounting for the local velocity of the mov-
ing wall.

APPENDIX IV: GRID GENERATION ON THE BODY SURFACE AND IN THE DOMAIN

Grids are first generated on the body surface. Initial grids at cross sections in the lonc
dinal direction are further redistributed to up to one hundred cross sections with suffici
small, uniform grid spacing. On demand for grid number, grid spacing, clustering rate, :
so forth, twog grid lines on the two curves df; andL, and twon grid lines on the curve
L, at the snout and the tail tip are formed in advance. For gnd line on the body surface
as illustrated in Fig. 4b, grids are generated on the grid line analytically. The followil
procedure is implemented: (1) determine the right and left cross sections by the given
points at two ends of the designated grid line; (2) divide the grid line in the longitudin
direction with uniform spacing

dx=(Xr —Xx0)/(jm—=1) and  Xj =X, +dx(j — 1), (AIV.1)
and in the chordwise direction with a uniform angle increment
Sa =m/2(jm — 1) and  «j =da(j —1); (AIV.2)

(3) interpolate the cross section at the gixgrio determine the elliptic curve with two axes
a; andbj; and (4) give the coordinateg andz; at the pointj by

yj =ajcodej) and  z;=Db;sin(aj). (AIV.3)

The grid line is further clustered similarly to those on the two curves. On the other ha
the grid linest eventually yield connecting grid points on eagchrid line.

The open boundary as shown in Fig. 5 is defined by using a quarter-sphere with ra
R for block | covering the head—body and a circular cylinder with the same r&rlifas
block Il and block 11l covering the tail and wake. Grids on the open boundary of block | a
uniformly generated. Grids on the open boundary for blocks Il and 11l are made having
same rate of grid clustering and grid spacing as those on the body surface and in the \
such that the quality of the grids can be maintained during regridding.

Grids in the domain are then generated by using an algebraic method [29] in each bl
Note that the configuration at the tail tip is slightly modified as illustrated in Fig. 5 to er
with a nonzero height fin instead of tapering to one point, in order to ensure quality
grids when regridding. Thus, minor modification of the tail tip geometry was made (s
Fig. 1b) and verified to barely affect the flow in both the steady and unsteady simulatic
According to the form of traveling wave which is a function of longitudinal position a
shown in Eq. (15), grid lines at the tail tip and in the wake, therefore, remain nearly strai
during regridding, merely stroking side by side at each section, which significantly enhan
both the stability and the speed of convergence.

Regridding at each time step is performed by first moving grids vertically side by si
on the body surface according to the undulating mode of Eq. (15) without any stretch
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(movement) in the longitudinal direction under the assumption of body elongation duri
swimming. Grids on the cut plane in the wake are forced to move with the same dista
as that on the grid line at the tail tip. Grids in the domain are regenerated as

yai, . 0™ =y, j, k@ +dyd, j, 1Y, (AIV.4)

where coordinatg at grid (, j, k) of a time leveln is updated by adding an increment of
vertical movement of/(i, j, 1)®°% on the body surface to the initigi, j, k)@, whereas
coordinatex andz remain unchanged. Implementation of the previous regridding proce
is capable of maintaining the quality of the initial grids as well as reducing the regriddi
to a minimized level.
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